[2018百度之星] 资格赛1003 整数规划 (最大匹配)

题目链接:http://bestcoder.hdu.edu.cn/contests/contest_showproblem.php?cid=820&pid=1003

希望最大化目标函数,事实上满足 Kuhn–Munkres algorithm 求解最小权匹配过程中的顶标的定义,现在就是要计算最大顶标和,而这正好就是最小权匹配 ,按照$x_i$和$y_i$给定的约束条件连边,同时边权置为负值。然后跑最大匹配,输出结果的相反数。

这题一般的KM算法是过不了的,因为网上流传的KM代码都到不了$O(n^3)$。于是去UOJ上扒了一份KM模版……

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
#include <bits/stdc++.h>
using namespace std;

typedef long long LL;
const int INF = 0x3f3f3f3f;
const int N = 405;
int w[N][N];
int lx[N], ly[N];
int lmatch[N], rmatch[N];
bool lvis[N], rvis[N];
int slack[N];
int pre[N];
int n;

int update(int n) {
int dt = INF, ru;
for (int j = 1; j <= n; j++)
if (!rvis[j] && slack[j] < dt) {
dt = slack[j];
ru = j;
}
for (int i = 1; i <= n; i++) {
if (lvis[i]) lx[i] -= dt;
if (rvis[i])
ly[i] += dt;
else
slack[i] -= dt;
}
return ru;
}

void match(int& u) {
for (; u; swap(u, lmatch[pre[u]])) rmatch[u] = pre[u];
}

void bfs(int u, int n) {
queue<int> q;
q.push(u);
lvis[u] = true;
while (true) {
while (!q.empty()) {
int u = q.front();
q.pop();
for (int v = 1; v <= n; ++v) {
int tmp;
if (rvis[v] || (tmp = lx[u] + ly[v] - w[u][v]) > slack[v])
continue;
pre[v] = u;
if (!tmp) {
if (!rmatch[v]) return match(v);
rvis[v] = lvis[rmatch[v]] = true;
q.push(rmatch[v]);
} else
slack[v] = tmp;
}
}
u = update(n);
if (!rmatch[u]) return match(u);
rvis[u] = lvis[rmatch[u]] = true;
q.push(rmatch[u]);
}
}
LL KM(int n) {
for (int i = 1; i <= n; i++) {
lmatch[i] = rmatch[i] = lx[i] = ly[i] = 0;
for (int j = 1; j <= n; j++) {
lx[i] = max(lx[i], w[i][j]);
}
}
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
slack[j] = INF;
lvis[j] = rvis[j] = false;
}
bfs(i, n);
}
LL res = 0;
for (int i = 1; i <= n; i++) {
res += lx[i] + ly[i];
}
return res;
}

signed main() {
// freopen("in", "r", stdin);
int T_T, _ = 0;
scanf("%d", &T_T);
while(T_T--) {
scanf("%d",&n);
memset(w, 0, sizeof(w));
for(int i = 1; i <= n; i++) {
for(int j = 1; j <= n; j++) {
scanf("%d", &w[i][j]);
w[i][j] = -w[i][j];
}
}

printf("Case #%d: %I64d\n", ++_, -KM(n));
}
return 0;
}